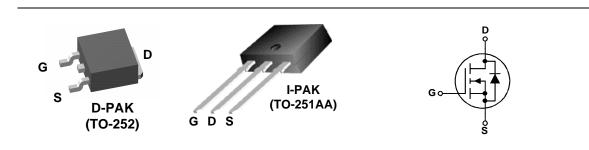
February 2004

FDD6612A/FDU6612A

30V N-Channel PowerTrench^o MOSFET

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $R_{DS(ON)}$, fast switching speed and extremely low $R_{DS(ON)}$ in a small package.


Applications

- DC/DC converter
- Motor Drives

Features

• 30 A, 30 V
$$R_{DS(ON)} = 20 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$$

 $R_{DS(ON)} = 28 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$

- Low gate charge
- Fast Switching
- High performance trench technology for extremely low R_{DS(ON)}

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Para	meter		Ratings	Units
V _{DSS}	Drain-Source Voltage			30	V
V _{GSS}	Gate-Source Voltage			±20	V
ID	Continuous Drain Current	@T _C =25°C	(Note 3)	30	А
		@T _A =25°C	(Note 1a)	9.5	
		Pulsed	(Note 1a)	60	
P _D	Power Dissipation	@T _C =25°C	(Note 1)	36	W
		@T _A =25°C	(Note 1a)	2.8	
		@T _A =25°C	(Note 1b)	1.3	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +175	°C

$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	3.9	°C/W
R _{0JA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	45	°C/W
$R_{ ext{ hetaJA}}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	96	°C/W

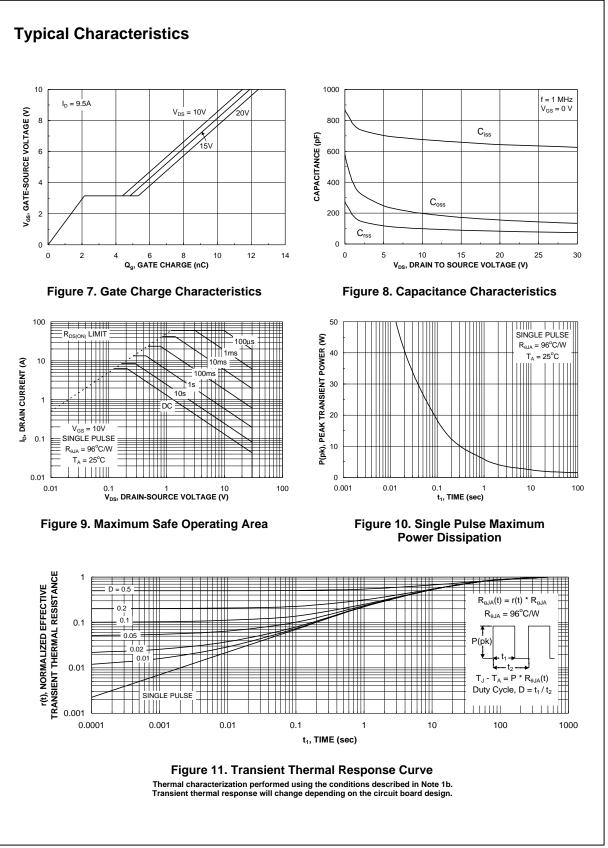
Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape width	Quantity
FDD6612A	FDD6612A	D-PAK (TO-252)	13"	12mm	2500 units
FDU6612A	FDU6612A	I-PAK (TO-251)	Tube	N/A	75

©2004 Fairchild Semiconductor Corporation

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-Sc	ource Avalanche Ratings (Not	e 2)				
W _{DSS}	Drain-Source Avalanche Energy	Single Pulse, $V_{DD} = 27 \text{ V}$, $I_D = 10 \text{ A}$			51	mJ
I _{AR}	Drain-Source Avalanche Current				10	А
Off Char	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 250 \mu A$	30			V
$\Delta BV_{DSS} \Delta T_J$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA,Referenced to 25°C		25		mV/°C
IDSS	Zero Gate Voltage Drain Current	$V_{\text{DS}} = 24 \text{ V}, \qquad V_{\text{GS}} = 0 \text{ V}$			1	μΑ
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1	2.0	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}, \text{Referenced to } 25^\circ\text{C}$		-5.1		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{ll} V_{GS} = 10 \; V, & I_D = 9.5 \; A \\ V_{GS} = 4.5 \; V, & I_D = 8 \; A \\ V_{GS} = 10 \; V, & I_D = 9.5 \; A, \; T_J \!=\! 125^\circ \! C \end{array} $		15 20 23	20 28 33	mΩ
g fs	Forward Transconductance	$V_{DS} = 5 V$, $I_D = 9.5 A$		28		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance			660		pF
Coss	Output Capacitance	$V_{DS} = 15 V$, $V_{GS} = 0 V$,		170		pF
Crss	Reverse Transfer Capacitance	f = 1.0 MHz		90		pF
R _G	Gate Resistance	V _{GS} = 15 Mv, f = 1.0 MHz		2.3		Ω
Switchir	g Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time			9	18	ns
t _r	Turn–On Rise Time	$V_{DD} = 15 V, I_D = 1 A,$		5	10	ns
t _{d(off)}	Turn–Off Delay Time	$V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$		24	38	ns
t _f	Turn–Off Fall Time	1		4	8	ns
Q _g	Total Gate Charge			6.7	9.4	nC
Q _{gs}	Gate-Source Charge	$V_{DS} = 15 V$, $I_D = 9.5 A$, $V_{GS} = 5 V$		2.1		nC
Q _{gd}	Gate-Drain Charge	- v _{GS} - J v		2.7		nC

V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, \text{ I}_S = 2.3 \text{ A}$ (Note 2)0.81.2VrrDiode Reverse Recovery TimeIF = 9.5 A, diF/dt = 100 A/µs20nS	Asimum Continuous Drain–Source Diode Forward Current 2.3 A I_{SD} Drain–Source Diode Forward $V_{GS} = 0$ V, $I_S = 2.3$ A (Note 2) 0.8 1.2 V I_{SD} Diode Reverse Recovery Time IF = 9.5 A, diF/dt = 100 A/µs 20 nS I_{TT} Diode Reverse Recovery Charge IF = 9.5 A, diF/dt = 100 A/µs 20 nS I_{TT} Diode Reverse Recovery Charge IF = 9.5 A, diF/dt = 100 A/µs 20 nS I_{TT} Diode Reverse Recovery Charge IF = 9.5 A, diF/dt = 100 A/µs 20 nS I_{TT} Diode Reverse Recovery Charge IF = 9.5 A, diF/dt = 100 A/µs 20 nC I_{TT} Diode Reverse Recovery Charge IF = 9.5 A, diF/dt = 100 A/µs 20 nC I_{TT} Diode Reverse Recovery Charge IF = 9.5 A, diF/dt = 100 A/µs b) $R_{0,A} = 96^{\circ}C/W$ when mounting surface of e drain pins. $R_{0,A}$ is determined by the user's board design. If $R_{0,A} = 96^{\circ}C/W$ when mounted on a 1in ² pad of 2 oz copper If $R_{0,A} = 96^{\circ}C/W$ when mounted on a minimum pad. cale 1 : 1 on letter size paper a) $R_{0,A} = 45^{\circ}C/W$ when mounted on a minimum pad. If $R_{0,A} = 96^{\circ}C/W$ when mounted on a minimum pad. Ataximum current is calculated as: $\frac{P_0$	Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
s Maximum Continuous Drain–Source Diode Forward Current 2.3 A /sD Drain–Source Diode Forward $V_{GS} = 0$ V, $I_S = 2.3$ A (Note 2) 0.8 1.2 V /sD Diode Reverse Recovery Time IF = 9.5 A, diF/dt = 100 A/µs 20 nS Qrr Diode Reverse Recovery Charge IF = 9.5 A, diF/dt = 100 A/µs 20 nC es: R_{uA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface one drain pins. R_{uC} is guaranteed by design while R_{uCA} is determined by the user's board design. b) $R_{uA} = 96^{\circ}$ C/W when mounted on a $1in^2$ pad of 2 oz copper b) $R_{uA} = 96^{\circ}$ C/W when mounted on a minimum pad. iscale 1 : 1 on letter size paper $\sqrt{\frac{P_D}{R_{DS(DN)}}}$ $\sqrt{\frac{P_D}{R_{DS(DN)}}}$ Maximum current is calculated as: $\sqrt{\frac{P_D}{R_{DS(DN)}}}$	Asimum Continuous Drain–Source Diode Forward Current 2.3 A I_{SD} Drain–Source Diode Forward $V_{GS} = 0$ V, $I_S = 2.3$ A (Note 2) 0.8 1.2 V I_{SD} Diode Reverse Recovery Time IF = 9.5 A, diF/dt = 100 A/µs 20 nS I_{TT} Diode Reverse Recovery Charge IF = 9.5 A, diF/dt = 100 A/µs 20 nS I_{TT} Diode Reverse Recovery Charge IF = 9.5 A, diF/dt = 100 A/µs 20 nS I_{TT} Diode Reverse Recovery Charge IF = 9.5 A, diF/dt = 100 A/µs 20 nS I_{TT} Diode Reverse Recovery Charge IF = 9.5 A, diF/dt = 100 A/µs 20 nC I_{TT} Diode Reverse Recovery Charge IF = 9.5 A, diF/dt = 100 A/µs 20 nC I_{TT} Diode Reverse Recovery Charge IF = 9.5 A, diF/dt = 100 A/µs b) $R_{0,A} = 96^{\circ}C/W$ when mounting surface of e drain pins. $R_{0,A}$ is determined by the user's board design. If $R_{0,A} = 96^{\circ}C/W$ when mounted on a 1in ² pad of 2 oz copper If $R_{0,A} = 96^{\circ}C/W$ when mounted on a minimum pad. cale 1 : 1 on letter size paper a) $R_{0,A} = 45^{\circ}C/W$ when mounted on a minimum pad. If $R_{0,A} = 96^{\circ}C/W$ when mounted on a minimum pad. Ataximum current is calculated as: $\frac{P_0$	Drain-So	ource Diode Characteristic	s and Maximum Ratings				
Vsp. Drain–Source Diode Forward Voltage V _{GS} = 0 V, I _S = 2.3 A (Note 2) 0.8 1.2 V rr Diode Reverse Recovery Time IF = 9.5 A, diF/dt = 100 A/µs 20 nS Qrr Diode Reverse Recovery Charge 10 nC es: e_{04A} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface one drain pins. R_{04C} is guaranteed by design while R_{0CA} is determined by the user's board design. b) $R_{04A} = 96^{\circ}C/W$ when mounted on a $1in^2$ pad of 2 oz copper b) $R_{04A} = 96^{\circ}C/W$ when mounted on a minimum pad. iscale 1 : 1 on letter size paper $\sqrt{\frac{P_D}{R_{DS(0N)}}}$ $\sqrt{\frac{P_D}{R_{DS(0N)}}$	SD Drain-Source Diode Forward Voltage $V_{GS} = 0$ V, $I_S = 2.3$ A (Note 2) 0.8 1.2 V r Diode Reverse Recovery Time IF = 9.5 A, diF/dt = 100 A/µs 20 nS trr Diode Reverse Recovery Charge IF = 9.5 A, diF/dt = 100 A/µs 20 nS as: as: 10 nC as: as: as: R _{0JA} is determined by the user's board design. b) R _{0JA} = 96°C/W when mounting surface of erain pins. R _{0JC} is guaranteed by design while R _{0CA} is determined by the user's board design. b) R _{0JA} = 96°C/W when mounted on a 1in ² pad of 2 oz copper b) R _{0JA} = 96°C/W when mounted on a minimum pad. cale 1 : 1 on letter size paper $\sqrt{\frac{P_D}{R_{DS(0N)}}}$ $\sqrt{\frac{P_D}{R_{DS(0N)}}$ $\sqrt{\frac{P_D}{R_{DS(0N)}}$ $\sqrt{\frac{P_D}{R_{DS(0N)}}$	S					2.3	А
Qrr Diode Reverse Recovery Charge 10 nC es: ReLA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface or the drain pins. R_{eUC} is guaranteed by design while R_{eCA} is determined by the user's board design. b) ReLA = 96°C/W when mounted on a 1in ² pad of 2 oz copper b) ReLA = 96°C/W when mounted on a minimum pad. Scale 1 : 1 on letter size paper a) $R_{eLA} = 45°C/W$ when mounted on a $1in^2$ pad of 2 oz copper b) $R_{eLA} = 96°C/W$ when mounted on a minimum pad. Maximum current is calculated as: $\sqrt{\frac{P_D}{R_{DS(ON)}}}$ $\sqrt{\frac{P_D}{R_{DS(ON)}}$ $\sqrt{\frac{P_D}{R_{DS(ON)}}$	Image: Diode Reverse Recovery Charge 10 nC as: BAA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of e drain pins. R_{eJC} is guaranteed by design while R_{eCA} is determined by the user's board design. b) $R_{eJA} = 96^{\circ}C/W$ when mounted on a $1in^2$ pad of 2 oz copper b) $R_{eJA} = 96^{\circ}C/W$ when mounted on a minimum pad. cale 1 : 1 on letter size paper ulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%	/ _{SD}				0.8	1.2	V
es: R_{aJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{aJC} is guaranteed by design while R_{aCA} is determined by the user's board design. a $R_{aJA} = 45^{\circ}$ C/W when mounted on a $1in^2$ pad of 2 oz copper b $R_{aJA} = 96^{\circ}$ C/W when mounted on a minimum pad. b $R_{aJA} = 96^{\circ}$ C/W when mounted on a minimum pad. b $R_{aJA} = 96^{\circ}$ C/W when mounted on a minimum pad. b $R_{aJA} = 96^{\circ}$ C/W when mounted on a minimum pad.	a b b c c e drain pins. $R_{\theta,UC}$ is guaranteed by design while $R_{\theta,CA}$ is determined by the user's board design. a a a b b b b c b c c c c c c c c	rr	Diode Reverse Recovery Time	IF = 9.5 A, diF/dt = 100 A/µs		20		nS
r_{eJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{eJC} is guaranteed by design while R_{eCA} is determined by the user's board design. a) $R_{eJA} = 45^{\circ}$ C/W when mounted on a 1 in ² pad of 2 oz copper b) $R_{eJA} = 96^{\circ}$ C/W when mounted on a 1 in ² pad of 2 oz copper b) $R_{eJA} = 96^{\circ}$ C/W when mounted on a minimum pad. B cale 1 : 1 on letter size paper Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0% Maximum current is calculated as: $\sqrt{\frac{P_D}{R_{DS(ON)}}}$	And is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of e drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design. (a) $R_{0JA} = 45^{\circ}C/W$ when mounted on a $1in^2$ pad of 2 oz copper (b) $R_{0JA} = 96^{\circ}C/W$ when mounted on a $1in^2$ pad of 2 oz copper (cale 1 : 1 on letter size paper (cale 1 : 1 on letter size paper (cale 1 : 2.0%) (from the calculated as: $\sqrt{\frac{P_D}{R_{DS(ON)}}}$	Qrr	Diode Reverse Recovery Charge			10		nC
Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0% Maximum current is calculated as: $\sqrt{\frac{P_D}{R_{DS(ON)}}}$	ulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0% <i>A</i> aximum current is calculated as: $\sqrt{\frac{P_D}{R_{DS(ON)}}}$		a) R _{eJA} = 45°C 1in ² pad of 2	/W when mounted on a 2 oz copper				nted
Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0% Maximum current is calculated as: $\sqrt{\frac{P_D}{R_{DS(ON)}}}$	ulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0% <i>A</i> aximum current is calculated as: $\sqrt{\frac{P_D}{R_{DS(ON)}}}$	Scale 1 : 1 on l	etter size paper					
Maximum current is calculated as: $\sqrt{\frac{P_D}{R_{DS(ON)}}}$	Maximum current is calculated as: $\sqrt{\frac{P_D}{R_{DS(ON)}}}$							
· ·		uise rest. Fui						
· ·		Maximum curr	ent is calculated as: $\sqrt{\frac{P_D}{R_{DS(ON)}}}$					
		where P _p is m	•	$S_{(20)}$ is at $T_{1(202)}$ and $V_{CS} = 10V$. Package current	limitation is 2	21A		
		Where I Dio III		s(on) to at 1 J(max) and VGS = 1000. I doktage out off	infinitation to 2			


FDD6612A/FDU6612A

FDD6612A/FDU6612A Rev. E(W)

FDD6612A/FDU6612A Rev. E(W)

FDD6612A/FDU6612A

FDD6612A/FDU6612A

FDD6612A/FDU6612A Rev. E(W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

	FAST®		Power247™	SuperFET™
ActiveArray™	FASTr™	LittleFET™	PowerSaver™	SuperSOT™-3
Bottomless™	FPS™	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-6
CoolFET™	FRFET™	MicroFET™	QFET [®]	SuperSOT™-8
CROSSVOLT™	GlobalOptoisolator™	MicroPak™	QS™	SyncFET™
DOME™	GTO™	MICROWIRE™	QT Optoelectronics [™]	TinyLogic [®]
EcoSPARK™	HiSeC™	MSX™	Quiet Series [™]	TINYOPTO™
E ² CMOS [™]	l²C™	MSXPro™	RapidConfigure™	TruTranslation™
EnSigna™	<i>i-Lo</i> ™	OCX™	RapidConnect™	UHC™
FACT™	ImpliedDisconnect [™]	OCXPro™	µSerDes™	UltraFET [®]
FACT Quiet Series [™]		OPTOLOGIC [®]	SILENT SWITCHER®	VCX™
Across the board	d. Around the world.™	OPTOPLANAR™	SMART START™	
The Power France		PACMAN™	SPM™	
Programmable A		POP™	Stealth™	
i iogiainnabio/				

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
		Rev. I11